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The positively charged state of interstitial iron in silicon was studied by means of electron-nuclear
double resonance. We have found hyperfine interactions of the impurity electrons with eight shells
of silicon neighbors containing 98 atoms. Because the ground state of interstitial Fe* is orbitally
degenerate, it has quite different features than interstitial Fe®, Ti*, and Cr* in silicon. The analysis
of the hyperfine interactions is much more complicated because the ground state cannot be written
as a single Slater determinant. For the most important high-symmetry ligand hyperfine interactions
a complete analysis with proper orbitally degenerate wave functions has been carried out. For more
remote lower-symmetry neighbor sites the experimental data indicate prominence of o-type ligand
orbitals. It is derived that the total spin density transferred to the surrounding silicon atoms is at
least 26%. Recent theoretical calculations are found to be in good agreement with this experimen-

tal result.

I. INTRODUCTION

Because of its high diffusion coefficient, iron is often
unintentionally present in silicon. The iron solubility of
10'® cm~? (Ref. 1) is sufficiently high to study iron with

various measuring techniques. Not surprisingly, iron is -

one of the most studied transition metals in silicon. Iron
introduces a donor level in the gap (Fe®—Fe*) at 0.385
eV above the valence band. Like most transition metals,
iron is present at the interstitial T site after rapid quench-
ing from the diffusion temperature. In electron paramag-
netic resonance (EPR) both the neutral and singly posi-
tive charge state of interstitial iron are identified. In
heavily doped p-type material no resonance of Fe; * is ob-
served, although no EPR resonance which can be associ-
ated with Si:Fe,2* is perceived either. The EPR charac-
teristics are conveniently described by the Ludwig- and
Woodbury model:*3 The s electrons are transferred to
the d shell which is split by the cubic field in an upper e
and a lower t, shell. The levels are filled according to
Hund’s rule, i.e., the configuration with highest spin con-
stitutes the ground state. In the case of interstitial Fe*
with electronic configuration (3d)’, the ¢, shell is only
partly filled and the ground state is *T,. Therefore orbit-
al momentum is still present, and this implies that Fe;*
(and Mn?) has different features than other well-known
transition metals in silicon. This remaining orbital
momentum is described by an effective spin L'=1. The
orbital momentum and the spin moment S =3 are cou-
pled to give J =1,3,3 states of which the Kramers dou-
blet J =1 constitutes the ground state. The remaining
orbital momentum also contributes to the g factor with
gr-=—73. If all orbital momentum would contribute one
would expect g =3gs—2g;. which equals %; for com-
plete absence of orbital contributions g =12. Experimen-
tally one finds g =3.524,% which is only slightly higher
than the value for complete quenching. An explanation
for this deviation was first given by Ham.*® Since the
ground state of Fe;* (*T,) is orbitally degenerate, a
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Jahn-Teller distortion is expected. The EPR spectrum of
Fe;* is isotropic, indicating cubic symmetry for the
center, excluding any sizable static distortion. According
to the theoretical interpretation, a dynamical Jahn-Teller
effect partially quenches the orbital contribution to the g
factor and accounts for the experimental value g =3.524.

However, recent theoretical calculations®=® show that
covalency cannot be neglected even in the case of a deep
defect like Fe. Covalency also reduces the contribution
of orbital magnetism and can account for the reduction
in g value as well. From EPR measurements of iron-
acceptor pairs one can conclude that covalency is more
important than the dynamical Jahn-Teller effect.'®!!

As indicated by Katayama-Yoshida and Zunger
there seems to be a duality with respect to localization for
Si:Fe. A localized picture is supported by the ground-
state total momentum J =1, by the absence of a static
Jahn-Teller distortion despite the *T; ground state for
Fe;*, and by the fast diffusivity. Arguments in favor of a
delocalized model are the strong crystal field, the reduc-
tion in central-ion hyperfine interaction and the reduc-
tion of the s-d Coulomb repulsion allowing the transfer of
an s electron to the d shell.

Katayama-Yoshida and Zunger did calculate the elec-
tronic structure of interstitial iron (both neutral and posi-
tively charged) by means of a self-consistent, all-electron,
spin-polarized Green’s-function method. Experimentally
the appropriate technique to measure the localization of
the electron state of a defect is electron-nuclear double
resonance (ENDOR). ENDOR results for Fe,? are pub-
lished in Ref. 12, and additional experimental data and a
different interpretation of these data are found in Ref. 13.
In this paper we present our ENDOR results of Fe;*.
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II. EXPERIMENTAL PROCEDURE

Starting material for the samples was float-zone-grown
dislocation-free 0.9 Qcm p-type silicon supplied by
Wacker Chemitronic. Material of this resistivity yielded
the highest concentration of Fe;*. Iron was introduced
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in the silicon by scraping with a piece of etched iron over
the sample surface'® followed by diffusion in a closed
quartz ampoule under argon atmosphere at the tempera-
ture of 1300°C for about 3 h. The samples were slowly
cooled, ground, and etched. After subsequent heating at
1300°C for a short period in an open ampoule the sam-
ples were quenched in water. Typical dimensions of the
samples were 2X2X 15 mm>. Until the measurements
the samples were stored in liquid nitrogen. Even a short
period at room temperature is enough to reduce the inter-
stitial iron concentration due to the formation of iron
clusters and iron-acceptor pairs. Many samples were
prepared because the EPR intensity and line shape were
very sample dependent. The measurements were per-
formed in a superheterodyne K-band spectrometer. The
incident microwave power was 1 uW and the spectrome-
ter was tuned to dispersion. The magnetic field could be
rotated in a {011} plane and was modulated at 83 Hz.
The cylindrical TE,, cavity was made of silver-coated
Epibond. In the wall a spiral groove was cut to make it
operate as an rf coil. The rf power was on-off modulated
at a frequency of 3 Hz, and the signal was detected by
two lock-in amplifiers to allow double phase-sensitive
detection. The ENDOR measurements were performed
at a temperature of 2 K.

III. RESULTS

The electron-paramagnetic-resonance line of intersti-
tial Fe* in silicon is a strain-broadened transition
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FIG. 1. Recorder trace of an electron nuclear double reso-
nance spectrum for Si:Fe;*. The magnetic field is parallel to
[100].

Am;==+1 for a J=1 system with isotropic g value
g =3.524. The full width at half maximum of the EPR
transition is typically of the order of 0.8 mT. This width
is strongly angular dependent and is smallest for fields in
the (100) directions.”* For comparison, the EPR line of
Si:Fe,° is always narrowest in the (111) directions. Con-
trary to Si:Fe,% !¢ no hyperfine structure due to interac-
tion with 2Si could be resolved in EPR for Fe; *.

An example of an ENDOR spectrum is given in Fig. 1.
The linewidth of the ENDOR resonances was of the or-
der of 2 kHz. The iron ions are situated at the T-

interstitial positions in the silicon lattice, which have site

TABLE 1. Hyperfine tensors (K), principal values 4, and eigenvectors (n;) of #Si neighbors of Si:Fe;*. Experimental uncertain-

ty is 0.4 kHz.
Tensor A (kHz) i A, (kH2) n,
T1 764.0 —2264 —226.4 1 990.4 (0.408, 0.408,—0.817)
—226.4 764.0 —226.4 2 990.4 (0.707,—0.707, 0.000)
—226.4 —2264 764.0 3 311.3 (0.577, 0.577, 0.577)
™ 87.6 1230.8 1230.8 1 2549.1 0.577, 0.577, 0.577)
1230.8 87.6 1230.8 2 —1143.2 (0.408, 0.408,—0.817)
1230.8 1230.8 87.6 3 —1143.2 (0.707,—0.707, 0.000)
R1 6790.7 460.0 0.0 1 9006.5 (0.000, 0.000, 1.000)
460.0 6790.7 0.0 2 7250.7 (0.707, 0.707, 0.000)
0.0 0.0 9006.5 3 6330.6 (0.707,—0.707, 0.000)
Mi 3639.3 71.4 538.0 1 4963.9 (0.367, 0.367, 0.855)
7.4 3639.3 538.0 2 3567.9 (0.707,—0.707, 0.000)
538.0 538.0 4502.1 3 32489 (0.604, 0.604,—0.519)
M2 357.4 361.8 83.8 1 748.0 (0.687, 0.687, 0.236)
361.8 357.4 83.8 2 231.0 (0.167, 0.167,—0.972)
83.8 83.8 259.8 3 —44 (0.707,—0.707, 0.000)
M3 592.2 96.2 142.2 1 830.1 (0.578, 0.578, 0.576)
96.2 592.2 142.2 2 496.0 (0.707,—0.707, 0.000)
1422 142.2 544.7 3 403.0 (0.407, 0.407,—0.818)
Gl 227.6 772 81.4 1 492.1 (0.385, 0.497, 0.778)
772 283.1 95.5 2 237.1 (0.353, 0.699,—0.622)
81.4 95.5 390.7 3 172.2 (0.853,—0.514,—0.094)
G2 194.1 3.6 772 1 889.8 (0.095, 0.549, 0.830)
3.6 353.3 354.5 2 205.5 (0.909,—0.387, 0.152)
77.2 354.5 646.5 3 98.6 (0.405, 0.740,—0.536)
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FIG. 2. Angular dependencies of the effective hyperfine interaction 4.4 for rotation of the magnetic field in the (011) plane, for all
eight observed ligand hyperfine interactions.
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symmetry 43m. The silicon neighbor sets can be divided
into four symmetry classes: General class containing 24
atoms per shell (labeled G), mirror-plane ({011}) class
containing 12 atoms per shell (labeled M), rhombic I
({100)) class with 6 atoms per shell (labeled R), and tri-
gonal ({111)) class with 4 atoms per shell (labeled T).
The separate atoms within a shell are eqmvalent by the
43m symmetry. Each symmetry class gives a different
number of ENDOR lines with a characteristic angular
dependence. We resolved eight hyperfine interaction ten-
sors: one rhombic, two trigonal, three mirror-plane and
two general class tensors. In Fig. 2 the angle-dependent
patterns of the eight hyperfine interaction tensors are de-
picted. All spectra could be analyzed with the following
spin Hamiltonian:

?{:ge‘[,BB‘J-'—E(J'Ki'li—gN#NB‘Ii) . (1)

The first term describes the electronic Zeeman interac-
tion, the last the nuclear Zeeman interaction, and the
middle term the hyperfine interaction. The summation is
over the lattice sites where a 2°Si nucleus is situated.
The abundance of the magnetic isotope 2°Si is 4.7%. The
ENDOR spectra could be described with an effective spin
J =1 and the nuclear spin I =} of 2981 _The parameters
to be determined are the components of A. The ENDOR
transitions (Am; =x1) are given in first order as

h":‘gNl‘NB_Acﬂmll N (2)

with 4,q=B-A-B/B?and m;=+1. The ENDOR spec-
trum is thus symmetric around the nuclear Zeeman fre-
quency gypugB/h. The measured ENDOR spectra were
fitted to the components of A by means of diagonaliza-
tion of the matrix representation of Eq. (1). The devia-
tion between calculated and measured frequencies was
generally within the ENDOR linewidth. The results are
shown in Table I. Tensor elements are given with respect
to Cartesian coordinates. Furthermore, the principal
values and eigenvectors are given. It is noted that the
overall sign of the elements could not be determined ex-
perimentally. An identification of a hyperfine tensor to a
specific shell of atoms is not possible on the basis of the
experimental data only.
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IV. ANALYSIS

Our purpose is to derive from the measured hyperfine
tensors an estimate for the spin density which is
transferred from the central metal ion to the silicon
ligands. Most simply, the data can be analyzed by the
traditional one-electron LCAO approach of Watkins and
Corbett. 7 In this analysis the tensor is written as
A= al+B with a ——Tr(A) An electron in a ligand 3s
orbital causes an isotropic hyperfine interaction with
a =4594 MHz, and an electron in a 3p orbital gives a
traceless axially symmetric tensor B with principal values
(4+2b,—b,—b) and b=114.2 MHz.'® This analysis
yields for the eight hyperfine tensors a total transferred
spin density of 28%. Data relevant to this analysis are
summarized in Table II. The constants a, b, and ¢ in
Table II are related to the principal values of A by
equating these values to a +2b, a —b +c, and a —b —c.
In the case of a transition-metal ion in silicon, this model
can only be used as a first approximation, because it does
not take into account (a) the proper more-electron
ground state of the defect, (b) the correct symmetry of the
molecular orbital, and (c) dipole-dipole interaction with
spin densities at other atom sites, especially at the central
ion.

A hyperfine tensor with different signs for the isotropic
and anisotropic parts, as shown in Table II for tensor T1,
can, for instance, never be explained within this model.
Therefore, a more detailed model is required for descrip-
tion of the influence of covalency on the magnetic proper-
ties of Fe; * in silicon. For transition metals with a first-
order quenching of the orbital momentum, the basic
theory is described by Owen and Thornley.!® For silicon
this model was ag)plied to interstitial Ti* (3d°), Fe° (3d%),
and Cr* (3d°).1%0:2! Because it has an orbitally degen-
erate and thus no single-determinant ground state, the
case of interstitial Fet is more complicated and necessi-
tates the calcu]ation of the hyperfine interactions from
first principles.!”” This method was develo?ed by Thorn-
ley et al.? to describe the properties of Co?* (3d’) in oc-
tahedral salts, for instance KMgF;:Co. The methods of
analysis reported in Refs. 19 and 22 are also discussed in
Ref. 23. Our analysis of interstitial Fe* in silicon (43m
symmetry) will closely follow this approach.?>?3 In these
references also the notation is defined.

TABLE II. One-electron LCAO analysis of the Si:Fe* hyperfine interactions. Units of @, b, and ¢ are kHz. a? is the fraction s
character, B? the fraction p character, 7 the localization per atom, and n the number of atoms in a shell.

Tensor a b ¢ a/b b/c a? B 7 (%) nn? (%)
T1 764.0 —226.4 0.0 -3.37 0.077 0.923 0.22 0.86
T2 87.6 1230.8 0.0 0.07 0.002 0.998 1.08 4.32
R1 7529.3 738.6 460.0 10.20 1.61 0.202 0.798 0.81 4.87
M1 3926.9 518.5 159.5 7.57 3.25 0.158 0.842 0.54 6.48
M2 3248 211.6 117.7 1.54 1.80 0.037 0.963 0.19 2.30
M3 567.4 126.9 46.5 4.54 2.73 0.102 0.899 0.12 1.49
Gl 300.5 95.8 325 3.14 2.95 0.073 0.928 0.09 2.16
G2 398.0 245.9 53.5 1.62 4.60 0.039 0.961 0.22 5.38
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For the calculations it is a simplification to treat the
3d’ configuration as three holes in a closed d shell. In
the strong-field approach the d-wave functions are split
by the cubic field into e and ¢, orbitals. The eigenfunc-
tions in terms of | /,m,) are

1,1y =2, —1)=—(|zx ) +i |y2))/V2,
[£,0')=(1]2,2)— | 2,=2))/V2=i|xp)y=|E),
Ity —1")=—|2,1)=(|2x)4—i |yz))/V2, (3
le,0)=]2,0)=|322—r?),/V2,
le,e)=(]2,2)+]2,=2))/V2=|x2—y?),,

where the prime indicates that the orbital momentum is
an effective one. Following Thornley et al.,?? the nota-
tion | £) is introduced to avoid confusion in the formulas
to be derived. The hole configuration for the ground
state is the *T, (t,e?) triplet. Higher energy states such
as *T, (t3e) will be neglected. To write down the ground
state of Fe; ™ we introduce the following notation. An or-
bital state of *T, will be written as a single Slater deter-
minant |abc |. A spin state will be denoted as

(labe |[+++D=|atbtct| (mg=1),
(labe |[++—=D=(|a*b*c™ |+ |atbc?]|
+la btet|)/V3 (mg=1),

and similar expressions for the other two spin states.
[++—] means a symmetrized Slater determinant.
Spin-orbit coupling mixes the spin § =3 and the effective
orbital momentum L'=1toJ =%, 3, and {. The ground
state doublet, corresponding to J =1 is given in terms of

Z
.4 Ty
Tyx
9 T4z
e, nLv
1 GL Inaz
ﬂ,/. “22 Fe* /-
Sx ¢ T3x
T2y
X %
/ n6v
e x

FIG. 3. Orientations of the o and 7 ligand orbitals centered
on the six atoms of a rhombic shell, symmetry 2mm.
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| my.) | mg) by the vector coupling formula:
|my=+1)=]+)=|1')]|-1)/V6

—10) | D34 =1) 1) /V2,
Imy=—1)=| =)= | =1 | D) /V X

—10) | =) /V3

+ 1) =2)/V2.

In the notation as introduced in Egs. (4) this is rewritten
as
[my=+L)=(|16e|[+——-1/V6

—(|06e|[++—-1/V3
+(| =16 |[+++]D/V2, (6)

and a similar formula for its Kramers conjugate state.
In terms of d orbitals the ground-state doublet of inter-
stitial Fe™ is finally written

|+)=(]|—16e|[+——1]/V6
—(|¢0e|[++—1/V3
—(|16e|[+++D/V2,

| =)=—(]16e|[++—-1/V6
—(|£6e|[+——1/V3
+(|—16e|[—-—=D/V2.

The important difference with the theory for Ti*, Fe°,
and Cr* is that in those cases there is no orbital degen-
eracy in the ¢, and e shells. The ground state is then
given by a single Slater determinant.

In order to calculate the ligand hyperfine structure we

Fd
K"Ax
27 ad 71
ya l Ly - |
- - |
e 9, -
e I T 7 |
‘4 7 I - 1X P l
| ' 9 |
| ' ' |
| ! ' |
y |
: | T T Y
I Fe' Inzv
|
: | I 2 |
|
| _ /L_ e
- | < Tax
't -
| - | -
// | //
X "3y - (2 -
T3x

FIG. 4. Orientations of ¢ and  ligand orbitals centered on
the four atoms of a trigonal shell. Directions of the orbitals
centered on atom 1 are o=(—1,—-1,—1)/V73,
T =(1,-2,1)/V6,and m;, =(1,0,— 1) /+2.
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must admix to the d orbitals of the central ion a linear
combination of 3s and 3p orbitals of the surrounding lat-
tice, belonging to the same irreducible representation.
These molecular orbitals need to be constructed for every
shell of ligand atoms. One can find the correct combina-
tion of ligand orbitals with the use of projection opera-
tors, a procedure which is outlined in Ref. 24 and applied

J
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in Refs. 13, 20, and 21. In order to project the ligand or-
bitals, one conveniently uses a (a,*n-,,ﬂy) coordinate sys-
tem as illustrated in Figs. 3 and 4 for rhombic and trigo-
nal class shells, respectively. In general, these are not
identical to the coordinates used in Eq. (7). With respect
to the (x,y,x) Cartesian coordinates, we find the follow-
ing molecular orbitals for the 2mm (rhombic I) class:

[xy)=a|xy) +(1/V2Bs) —56)+(1/V2)y( =z, —2¢)+ 18(2y+ 23+ 24 +25)+ Le(py + X3 —y4—X5) ,

|yz)=a|yz )d+(l/\/5)B(s2——s4)+(l/\/§)y( —Xy—Xg)+30(x | +x34+x5+x6)+ ey, +23—25—y¢) ,

|zx ) =a|2zx )4 +(1/V2)Bls;—55)+(1/V2)y(—yy; —ps)+ L8y, +y, + P4 +Y6)+1e(x, +2,—24—x¢) , (8)

[322—rt) =a’ | 322 —r?) ; +(1/2V3)E(2s, + 25 — 5, —53 — 54 —55)+(1/2V3)( — 22, + 224+ Xy + 93— X4 —Ps) ,

|x2—y?)=a'|x?—y?) j+1&(s;—53+54—55)+ tk(—X, +y3+x4—ps) .

a® and a’? denote the amount of spin on the central Fe,*
ion in the ¢, and e orbitals. The other coefficients are the
admixtures of spin on the ligands in a specific shell. The
molecular wave function can only be normalized when
the contributions of all ligand shells are added. In order
to calculate the ligand hyperfine interaction we only have
to consider one given ligand atom, say no. 1, because the
other ligands in the shell are equivalent by symmetry.
The contribution of ligand 1 can conveniently be rewrit-
ten in terms of s and p orbitals:

| D=a|1),+(€/2)|1),~(i8/2)| -1),,

| &) =a|L)y+B/V2)|s)—liy/V2)]0),,

| =D =a|—1),+(i8/2)|1),+(e/2)| —1),, 9)
|6)=a’'|0)y+(£/V3)|s)—(k/V3)]|0),,
le)=a'|e), .

For the trigonal case, the contribution from atom 1 (Fig.
4) is in a similar treatment given by

|xp)=a|xp)y+(B/2)|s)—(y/2V3) | x +y +2),
+(8/2V6) | x +y —22), ,

|yzY=a|pz)g+(B/2)|s)—(y /2V3) | x +y +2),
+(8/2V6) | —2x +y +2), ,

lzx)=a|zx ), +(B/2)|s)—(y /2V3) | x +y +2),
+(8/2V6) | x =2y +2), , (10)

|0)=a’|0),+(e/2V6) | —x —y +22), ,

le)=a'|e)y+(e/2V2)|x —y), .

On the M and G class shells we will comment later. For
convenience the difference between a and a’ will be
neglected.

In the effective spin formalism the hyperfine interac-
tion is written as: #f=J-A-I with J = and eigenstates
| +1) and | —1). Making the correspondence between

this effective spin formalism and the ground state
| +7, | —) when defining % =N-I, one derives

A,=2(+|N,|+),

A, =2Re{(—|N, | +)},
A, =2Im{(—|N,| +)},
A, =2Re{{—|N, | +)},
A, =2Ref(—|N, | +)},
A, =2Im{(—|N, | +)} .

(11)

The hyperfine structure operator N consists of three
different contributions.

(a) Interactions with s electrons. The admixture of s
electrons gives rise to the Fermi contact interaction and
the Hamiltonian is written as

H=(po/4m)smg grpppn (3 | 4:(0)| s 1], (12)

1

where the summation is over the single-particle orbitals
and s; = . In the case of silicon the prefactor

A =%l»¢ogcg/v#3#~ | ¥3,(0) | 2

equals —4594 MHz (in frequency units).
(b) Interaction with p electrons. The interaction is
given by

H=(po/4m)8 gnmpun{r )3, 3 (N D), (13)

with
N =1l —k8; +X[5;(;+ Ds; — 3-8 — 31,(1;s,)]

Again the summation is over the occupied single-hole or-
bitals, s, =, ;=1 (p electrons) and thus X=2. The first
term represents the nuclear-spin-electron-orbit interac-
tion. The second term accounts for the core polarization
with «. an empirical constant. The remaining terms are
the electron-spin—nuclear-spin dipolar interactions. In
the case of silicon no reliable estimate for the core-
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polarization constant k. can be given. Fortunately, the
parameters to be determined, the admixture coefficients
of ligand orbitals, are almost completely insensitive to
changes in k,.?> In the analysis x, was therefore taken to
be 0. For silicon the prefactor

A, =(po/4m)g gnppun(r ),

equals —285 MHz.

(c) Dipolar interaction with distant electrons. Here we
restrict ourselves to the dipole-dipole interaction between
the d electrons on the central ion and the nuclear spins of
the ligands. In the point dipole approximation it is deter-
mined by the parameter

Ag=(po/4m)g gnpin(R ~*)a?, (14)

with R the distance between central ion and ligand and
a? the fraction of spin that is actually on the central ion.
On principal axes the hyperfine tensor due to this dipolar
interaction is given by

A,=24y, A =A,=—4,.

For these operators the matrix elements given in Eq.
(11) are to be calculated. We neglect contributions to the

hyperfine tensor from atoms on other sites than the one -

considered, except the dipolar interaction with the cen-
tral ion as given in (c). Since there are no matrix ele-
ments between a p and an s orbital, we can calculate the p
and s contributions separately. The, very lengthy, calcu-
lations then give the following results: For rhombic sym-
metry,

Azz= 2Ada2+ As(TIgBZ"" 2_57§2)
+ A, [— B8+ Le+ Ly2+ k3 +(1/15V2)y8] ,
Axx =- Ada2+ As( _%Bz‘*‘ 2%§2)

+ A, [— 58— Lel— Zy?— kP4 (11/30V2)8y],

— (15)
Ay, =A,[ %5e8—(3/10V2)ey],

Ay=Ay; A,=A4,=0.
For trigonal symmetry,
A=A, 3P+ A, — 58— Lyr—(19/45V2)y8] ,
Ay, = Aga’— A, LB

+ A [— 58— Ly — Le24(3/20V218],  (16)
An=A,=A4,; A, ,=A,=4, .

The most striking feature is that the Fermi contact in-
teraction (terms with A4;) is no longer isotropic. Anisot-
ropy did also arise in the case of Co®* in an octahedral
field, although in that case the anisotropy was only
present if the excited state *T,(t3e) was taken into ac-
count.?? On the other hand the interaction with p elec-
trons does not give a traceless contribution to the
hyperfine tensor A4 but contains an isotropic part as well.
Therefore, it is not very useful to split the experimental
tensor into a diagonal and an off-diagonal part. Finally,
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we note that there are more parameters describing the
spin transfer to the ligand orbitals than measured data in
the form of hyperfine tensor components. It is thus im-
possible to obtain the spin density in the orbitals sepa-
rately. It is not even possible to determine the total
amount of spin transferred from the central ion to a sil-
icon lattice shell, chiefly because parameters with
coefficients of either sign are summed.

Since for interstitial Fet the important discussion is
whether it is a localized or a delocalized defect, we at-
tempted to find a minimum transferred spin density
(MTSD). For that purpose a computer program was
written around the routine EO4WAF from the NAG pro-
gram library, to find an extremum of the sum of squares
of all admixture coefficients under the constraints given
by Egs. (15) and (16). The summation is over all
coefficients for a shell, except a, because a? is the spin
density on the central ion and depends on the total ad-
mixtures to all ligands and not just on the admixture to
one specific ligand shell. a? was therefore set equal to
some reasonable values, i.e., 0.5, 0.6, or 0.7. The allowed
difference between a and a’ is neglected. Because the dis-
tant dipolar interaction A, depends on R, we have to as-
sign each tensor to a specific shell. Since we have no a
priori knowledge of the electronic structure, we can only
make the assignment in an intuitive manner. We assign
the tensor with the largest spin density in the one-
electron linear combination of atomic orbitals (LCAO)
analysis to the nearest shell with the appropriate symme-
try. Thus T2 is assigned to the nearest-neighbor shell, R1
to the second, and so on. Therefore, the procedure out-
lined above computes that combination of parameters
(the ligand admixture coefficients) that accounts for the
observed hyperfine tensor, and that minimizes the total
spin transfer to the corresponding ligand shell. A similar
attempt to find a maximum spin transfer did not result in
physically acceptable results. For a’=a’'?=0.6 we ob-
tained the results for the minimum transferred spin densi-
ty to the whole shell of symmetry related neighbors as
given in Table III. The results did not differ much for
a?=0.5 or 0.7. It is noted that a fit to tensor T2 could
only be found by taking the Cartesian tensor elements as
negative. The overall sign of the tensors is quite impor-
tant, taking the elements of R1 negative gives a minimum
spin transfer of 18% in R1. Interchanging the shell as-
signment of T1 and T2 the total amount of spin transfer
in T1 and T2 was also 5.7%. Comparing the figures as
obtained by the LCAO and MTSD analysis, we note that
the LCAO procedure tends to give slightly higher values

TABLE III. Calculated ligand admixture from the trigonal
and rhombic hyperfine interactions. Given are values of spin
transfer obtained from a simple one-electron LCAO treatment
and the minimum transfer of spin density (MTSD) as obtained
from the present calculations.

Tensor LCAO (%) MTSD (%) Shell
Tl 0.86 0.53 (2,2,2)
T2 43 5.2 (1,1,1)
R1 4.9 2.7 (2,0,0)
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TABLE 1V. Comparison of axial directions of M- and G-class tensors with pertinent directions of
lattice sites. Given are angles between these directions. For the lattice sites the distances d to the cen-
tral ion are given, as well as their shell numbers when ordering shells after their distance within each

symmetry class.

Tensor Axis Position No. Angle d(A)
M1 (0.367,0.367,0.855) (1,1,3) 1 6.0° 4.50
M2 ~ (0.687,0.687,0.236) (3,3,1) 2 0.4° 5.91
M3 (0.578,0.578,0.576) (4,4,2) 4,5 15.7° 8.14
M3 (3,3,5 6 14.5° 8.90
Gl (0.385,0.497,0.778) (1,3,5) 2 12.9° 8.03
G2 (0.095,0.549,0.830) 0.2,4) 1 8.8° 6.07
G2 (0.4,6) 3 5.5° 9.78

than the calculated minimum spin transfer.

So far we have limited our calculations to the rhombic
and trigonal ENDOR tensors. In the case of the lower
symmetry tensors M1-M3 and G1,G2, the analysis en-
counters further difficulties which we will now discuss.
The correctly symmetrized molecular orbitals are pro-
jected in terms of s, o, 7,, and ™, ligand orbitals. The
iron ground state, on the other hand, is written with
respect to x,y,z coordinates. Therefore one needs to ex-
press the molecular orbitals in x,y,z coordinates. In case
of rhombic-I symmetry the two sets (x,y,z) and

(my,m,,0) are almost identical (Fig. 3) and for trigonal .

symmetry the fixed relation is shown in Fig. 4. In the
case of mirror plane (M) or general class (G) symmetry,
the transformation between ( Ty, T,,0) and (x,,2) is not
only dependent on the symmetry class but also on the
specific shell of atoms considered. For example in a M
class shell, atom 1 is positioned at (n,n,m) and the o or-
bital points in the [ —n —n —m] direction. Therefore,
for the shell containing (1,1, —3) and the shell containing
(3,3,1) a different set of orbitals is used. This implies that
for these lower symmetry classes M and G no general ex-
pressions for the hyperfine tensor components can be
given. A separate complete calculation has to be done for
every possible shell of atoms, whereas the calculational
effort does not diminish with lower symmetry. In the
case of these lower symmetries even more parameters
(ligand admixture coefficients) and independent hyperfine
tensor elements are allowed that aggravate the calcula-
tions. Also it is questionable whether the numerical
searching routine will still yield reliable results in these
cases. Furthermore, the assignment of a hyperfine tensor
to a shell of ligands can be subject to ambiguity.'>2%2!

In the analysis of hyperfine interactions of Ti* and
Cr™ an interesting correlation between axial directions of
hyperfine interactions and directions of neighboring sil-
icon sites had been found for all M- and some G-class ten-
sors.?%2! From this correlation tentative assignments of
tensors to shells of atom sites could be made. It was de-
duced that admixture of o orbitals was far prominent, al-
though 7 admixture was allowed by symmetry as well. In
the present case a similar comparison can be made. In
Table IV axial directions of M- and G-class tensors are
compared with positions of pertinent lattice sites. Angles
between the two directions are given. It follows that
reasonable assignments can be made with nearby sites of
the right symmetry. In the present case it is much less

self-evident what effect o orbitals will eventually produce
in the hyperfine interaction. If we consider the given or-
bitals for rhombic and trigonal symmetry, Eqgs. (8) and
(10), we notice that admixture of o orbitals in the doublet
states is only allowed in the rhombic case. In Eq. (15) it
directly gives rise to terms which are axial along the
ligand direction. The effect for the triplet states is some-
what more complicated. Inspection of Egs. (15) and (16)
reveals that admixture of solely o orbitals gives rise to
both a small isotropic contribution and an anisotropic
contribution which turns out to be also axial along the
ligand direction, for trigonal as well as for rhombic sym-
metry. Although similar formulas for M- and G-class
shells have not been derived for the reasons mentioned
earlier, one may expect that they will exhibit a similar be-
havior. From the observed correlation in Table IV we
may thus conclude that in the present case of the M- and
G-class sites of Fe™ there is a preference for o admixture
as well. Because of the much more complicated relation
between ligand orbitals and hyperfine interaction than in
the orbital singlet states of Ti* and Cr*, even this
simplification does not enable us to give a more exact es-
timate of the ligand admixture to these sites without tedi-
ous calculations.

In the case of Ti and Cr the analysis yielded a MTSD
on the order of the result of the one-electron LCAO
analysis. Also for the trigonal and rhombic shells in the
present case results are only a little different. For these
reasons we did not pursue the calculational efforts for the
M- and G-class tensors and used the LCAO results as an
approximation of the MTSD.

Summarizing, we conclude that from the present
ENDOR experiments it follows that the transferred spin
density from the interstitial Fe* ion to the ligand silicon
atoms is at least 26%.

V. DISCUSSION

We have shown that the interstitial Fet defect in sil-
icon interacts strongly with the silicon lattice, as the elec-
tronic spin distribution can be measured over a volume of
98 atoms. From the hyperfine interactions we derived
that a lower limit of the amount of transferred spin to
these ligands is 26%. An upper margin of the spin
transfer can only be estimated from the reduction of the
observed isotropic hyperfine interaction of the 3’Fe ion
with respect to the free ion. When using the calculated
hyperfine interaction of the free ion by Watson and Free-



37 ELECTRON-NUCLEAR DOUBLE RESONANCE OF . ..

man,” one arrives at | $(0) | 2=0.836 (a.u.) 3. From the
experimental value 4 =8.96 MHz (Ref. 2) for Fe* in sil-
icon, and using the formula 4 =2pu.g,gyuguy | ¥(0) |2
one finds |¥(0)|2=0.037 (a.u.)~3. This reduction by
95% is thought to give an estimate for the upper limit of
the spin transfer. This conclusion is based on the as-
sumption that the self-hyperfine interaction is entirely
caused by exchange core polarization of the closed shells
of s electrons, which in turn is proportional to the d lo-
calization on the central ion. It is not certain, though,
how crude this approximation is.

When comparing the 2°Si ENDOR results of neutral
iron in silicon!>'® and the present results for Fet, some
similarities attract attention. The hyperfine tensors of
Si:Fe;* labeled T1, T2, R1, and M1 have striking
equivalents in the case of Si:Fe;%. In particular, in both
cases a very anisotropic, almost traceless, trigonal tensor
is observed, while the hyperfine tensor with largest trace
corresponds in both cases to a ligand shell with rhombic
symmetry. In this respect Si:Fe is clearly different from
Si:Ti* (Ref. 20) and Si:Cr* (Ref. 21), where the tensor
with largest trace has trigonal symmetry. On the other
hand, for the lower symmetry (M- and G-type) ligand
shells of Fe;* we observe a pronounced preference for o

ligand admixture. A similar preference had just been -

found for Ti* and Cr™*, while Fe® exhibits no such effect
at all. A further comparison of the ENDOR results of
Fe’, Ti*, and Cr™ is given in Refs. 21 and 26.

It is most interesting to compare our results with re-
cent theoretical calculations by Katayama-Yoshida and
Zunger”® and by Beeler et al.’. From Refs. 7 and 8 we
will only pay attention to the more reliable results of the
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self-interaction-corrected —local-spin-density  (SIC-LSD)
method. The results of the mere LSD method can be re-
jected because they do not produce the experimentally
observed high-spin state (S =2) of Fe;*. The calcula-
tions”® show that both Fe,® and Fe;* have comparable
ionic charge, 0.37 and 0.57 electron, respectively. The
effect of ionization of Fe;° is that 0.8 hole is distributed
throughout the crystal. As for the spin density, Refs. 7
and 8 calculated a delocalization of 38% for Fe; ™ (29%
for Fe;°) and Ref. 9 calculated 27% (12% for Fe,®). The
delocalization percentages of Refs. 7 and 8 and Ref. 9 are
not directly comparable, as Ref. 9 calculates the localized
spin as the spin within a Wigner-Seitz atomic sphere,
while the impurity orbital subspace used in the SIC-LSD
calculations”® may correspond to a different volume.
Anyway, the results of both calculations are in accor-
dance with our ENDOR measurements. Also both ex-
periment and theory indicate that the spin density is
more delocalized for Fe;* than for Fe,%. It is noted that
in the case of Fe,? only e orbitals are involved, enabling
the exact determination of the ligand admixture
coefficients, rather than a minimum spin transfer. In the
complicated case of Fe; ™ it is not possible to determine
exact ligand admixtures. Hopefully, future calculations
will enable the direct determination of the 2’Si hyperfine
tensor components so that a further comparison between
theory and experiment will become possible.
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